

Sustainability Optimisation with Multiple Criteria and Multiple Stakeholders

Dr. Dylan Jones, Professor of Operational Research

Centre for Operational Research and Logistics (www.port.ac.uk/corl) Department of Mathematics, Faculty of Technology

Co-authors: Helenice Oliveira, Danila Cantane, Rogerio Oliveira(State University of São Paulo, Brazil) Concepción Rodriguez (University of Huelva, Spain)

Contents

- Definitions and fundamental concepts
- Multiple criteria optimisation
 - Distance-based methods,
 - Extended network goal programming
- Sustainability
 - Sustainability as a multiple criteria decision problem
- Application: container port selection and logistics
- Overview of other multi-criteria sustainability research projects
- Conclusions

What is Operational Research?

IFORS

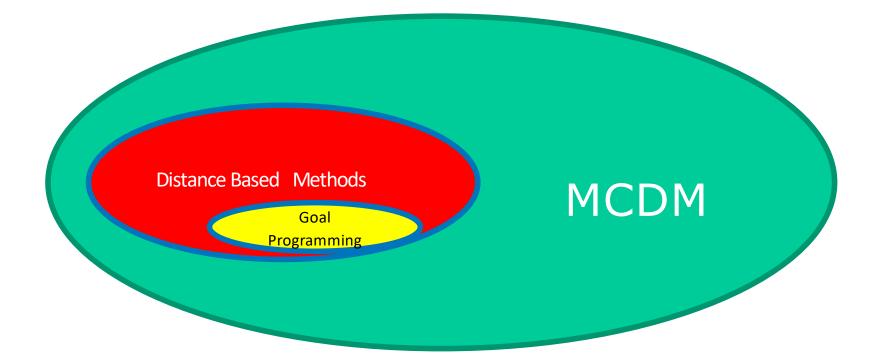
- The science of better.
- The science of *making* better *decisions (my additions)*.
- ECRO THE ASSOCIATION OF EUROPEAN OPERATIONAL RESEARCH SOCIETIES
- Operational research (O.R.) is the discipline of applying advanced analytical methods to help make better decisions.
- Centre for Operational Research and Logistics <u>www.port.ac.uk/corl</u>

Multiple conflicting criteria?

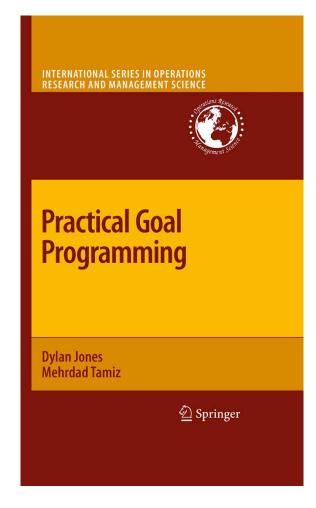
- A **criterion** is one dimension by which the goodness of a given solution to a problem may be measured. (Jones and Tamiz, 2010)
 - Cost, time, environmental impact, customer satisfaction, patient throughput, average queuing time, student satisfaction, ...
- An **objective** is a criterion plus a direction.
 - Minimise cost, maximise customer satisfaction

Multi-Criteria Decision Making

Decisions with multiple measurement criteria are termed MCDM problems


Car Choice problem? Binary choice

Criteria Acceleration, cost, number of passengers, prestige,...


Multi-Criteria Decision Making

Goal Programming

- A criterion is one dimension by which the goodness of a given solution to a problem may be measured. (Jones and Tamiz, 2010)
 - Cost, time, environmental impact, customer satisfaction, patient throughput, average queuing time, student satisfaction,
- An **objective** is a criterion plus a direction.
 - Minimise cost, maximise customer satisfaction
- A **goal** is a criterion, a direction, plus a numerical target value.
 - Achieve a total cost of less than £10,000,000
- **Goal programming** is a satisficing mathematical technique for achieving a set of goals as closely possibly in the presence of multiple, conflicting criteria.

Jones and Tamiz 2010

Satisficing?

- Herbert Simon (1916-2001)
- Bounded rationality
- Satisficing: Satisfy + Suffice
- Organisations make decisions by aiming to reach a set of defined goals rather than by the theoretical "ideal" of optimising all objectives
- Satisficing Vs Optimising

Source: The Nobel Foundation

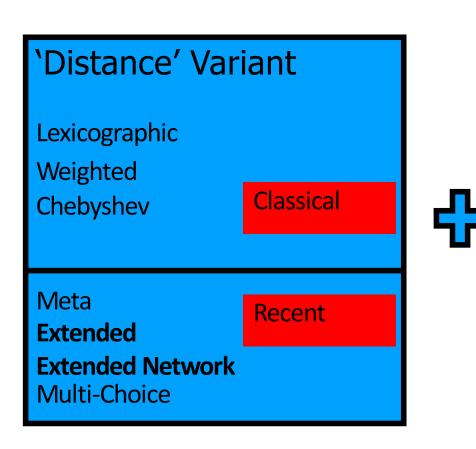
Generic form of a weighted goal programme (Q goals)

$$Min \ \boldsymbol{a} = \sum_{q=1}^{Q} \left(\frac{u_q n_q}{k_q} + \frac{v_q p_q}{k_q} \right)$$

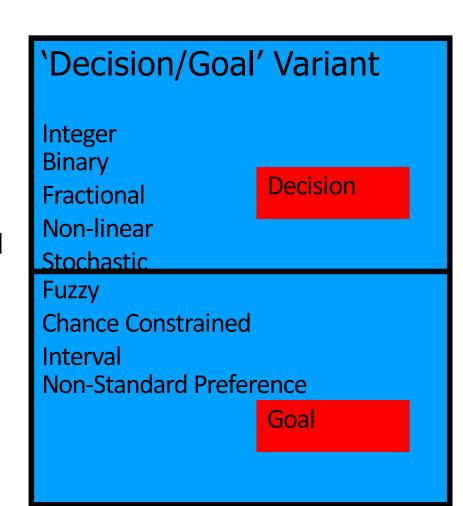
Subject to:

$$\begin{aligned} f_q(\underline{x}) + n_q - p_q &= b_q \qquad q = 1, \dots Q \\ \underline{x} \in F \\ n_q, p_q &\geq 0 \qquad q = 1, \dots, Q \end{aligned}$$

Distance Metric based MCDM methods


- A distance-metric based MDCM method utilises one or more distance metrics to achieve a solution in accord with the decision maker(s) preferences
 - Goal programming: Minimise distance between a set of decision maker specified targets and the set of achieved values (Charnes and Cooper, 1955, 1961)
 - Compromise programming: Minimise distance between the set of ideal values and the set of achieved values (Yu and Zeleny, 1973).
- The Lp distance metric is most frequently used:

$$Min \ L_p = \left[\sum_{i=1}^{Q} \left(\frac{u_i n_i}{k_i}\right)^p + \sum_{i=1}^{Q} \left(\frac{v_i p_i}{k_i}\right)^p\right]^{\frac{1}{p}}$$


- Weighted goal programming: p=1
- Lexicographic goal programming: series of p=1
- Chebyshev goal programming (Flavell, 1976): p=∞
- Extended goal programming (Romero, 2004): p=1 and p= ∞
- Meta goal programming (Rodriguez *et al.*, 2002): p=0, p=1 and p=∞

Goal programming variants

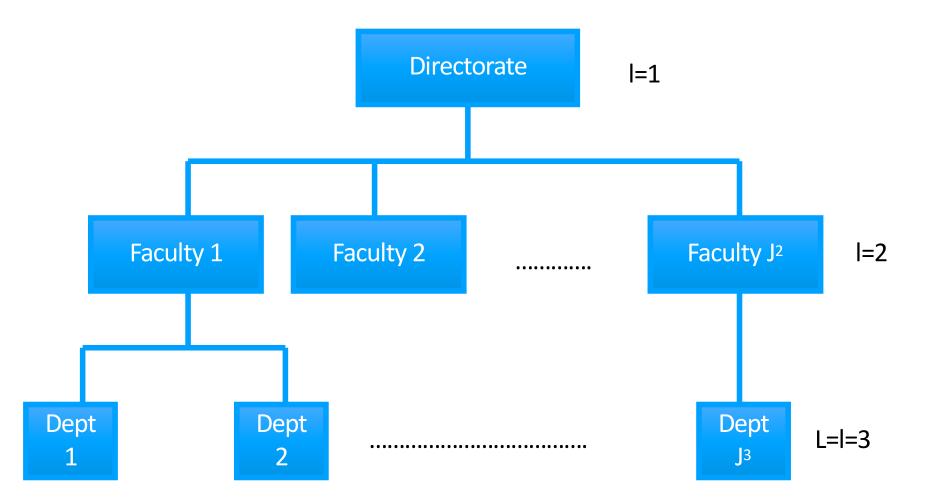
Extended Goal Programming (Non-Lexicographic) – Romero 2001,2004

$$Min \ a = \alpha \lambda + (1 - \alpha) \sum_{i=1}^{q} \left(\frac{u_i n_i}{k_i} + \frac{v_i p_i}{k_i} \right)$$

Balance Optimisation

Subject to,

$$f_i(\underline{x}) + n_i - p_i = b_i \quad i = 1, ..., q$$
$$\frac{u_i n_i}{k_i} + \frac{v_i p_i}{k_i} \le \lambda \qquad i = 1, ..., q$$
$$n_i, p_i \ge 0 \qquad i = 1, ..., q \qquad \lambda \ge 0$$



Extension to a network of decisions

- Consider a network with *L* layers.
- Each network layer l = 1, ..., L consists of j^{l} nodes
- Each node has k objectives, with associated function $f_k^{j^l}(\underline{x})$, a target value $b_k^{j^l}$ and deviational variables $n_k^{j^l}$ and $p_k^{j^l}$

Example – A University

Research output, student numbers, student satisfaction ,....

Extended goal programming network model (part 1)

$$Min \ a = w_1 \left[\alpha^{j^1} \lambda^{j^1} + (1 - \lambda^{j^1}) \left(\sum_{k=1}^K \frac{u_k^{j^1} n_k^{j^1}}{b_k^{j^1}} + \frac{v_k^{j^1} p_k^{j^1}}{b_k^{j^1}} \right) \right] \\ + \sum_{l=2}^L w_l \left[\beta_l D_l + (1 - \beta_l) \sum_{j^l=1}^{J^l} \left\{ \alpha^{j^l} \lambda^{j^l} + (1 - \alpha^{j^l}) \left(\sum_{k=1}^K \frac{u_k^{j^l} n_k^{j^l}}{b_k^{j^l}} + \frac{v_k^{j^l} p_k^{j^l}}{b_k^{j^l}} \right) \right\} \right]$$

Subject to,

$$f_k^{j^l}(\underline{x}) + n_k^{j^l} - p_k^{j^l} = b_k^{j^l}$$
 $k = 1, ..., K; j^l = 1, ..., J^l; l = 1, ..., L$

Extended Goal Programming Network Model (part 2)

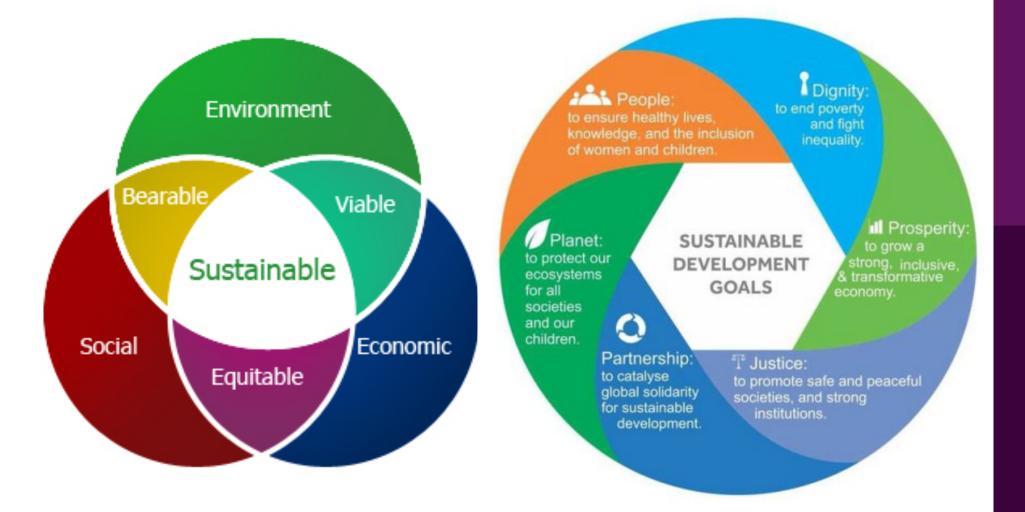
$$\begin{split} \sum_{k=1}^{K} \frac{u_{k}^{j^{l}} n_{k}^{j^{l}}}{b_{k}^{j^{l}}} + \frac{v_{k}^{j^{l}} p_{k}^{j^{l}}}{b_{k}^{j^{l}}} &\leq \lambda^{j^{l}} \qquad k = 1, \dots, K; \quad j^{l} = 1, \dots, J^{l}; \quad l = 1, \dots, L \\ \sum_{j^{l}=1}^{J^{l}} \left\{ \alpha^{j^{l}} \lambda^{j^{l}} + (1 - \alpha^{j^{l}}) \left(\sum_{k=1}^{K} \frac{u_{k}^{j^{l}} n_{k}^{j^{l}}}{b_{k}^{j^{l}}} + \frac{v_{k}^{j^{l}} p_{k}^{j^{l}}}{b_{k}^{j^{l}}} \right) \right\} &\leq D_{l} \quad j^{l} = 1, \dots, J^{l}; \quad l = 1, \dots, L \end{split}$$

$$\underline{x} \in F$$

$$n_k^{j^l}, p_k^{j^l} \ge 0 \quad k = 1, \dots, K; \quad j^l = 1, \dots, J^l; \quad l = 1, \dots, L$$

$$\lambda^{j^l} \ge 0 \quad j^l = 1, \dots, J^l; \quad l = 1, \dots, L; \quad D_l \ge 0 \quad l = 1, \dots, L$$

Important Parameters


 w_l is the relative level of importance given to network level l

 $\alpha^{j^{l}}$ gives the level of consideration of balance versus optimisation amongst **objectives** at node j^{l} at network level *l*.

 β_l gives the level of consideration of balance versus optimisation amongst stakeholders scores at network level *l*.

Multiple Criteria in Sustainability

Source, Rochester Institute of Technology, US and United Nations

Sustainable:

• Energy

- Finance
- Agriculture
- Cities

Transportation

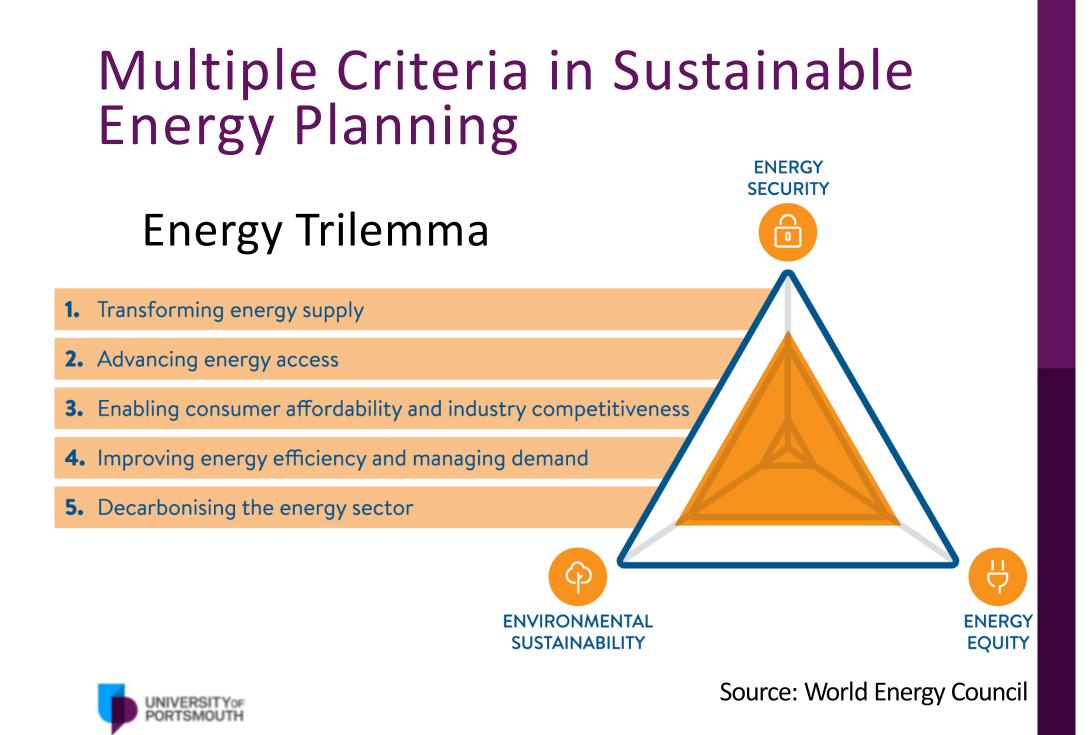
Healthcare

• Logistics and Supply Chain Management

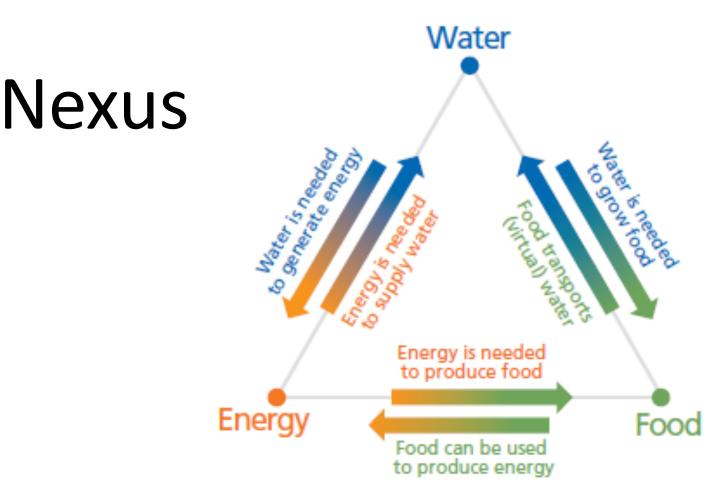
- Tourism
- Development

Multi-criteria Sustainability

- Over 2000+ articles combining multiple criteria and sustainable keywords
 - 178 combining goal programming and sustainable keywords
 - Some recent examples:
- Sustainable Indian Economic growth and development (Gupta et al., 2018)
 - Fuzzy goal programming model
- Sustainable Portuguese agriculture (Xavier et al., 2018)
 - Extended goal programming model
- Sustainable tourism evaluation (Blancas et al., 2018)
 - Weighted goal programming with multiple sub-criteria (indices)
- Sustainable biomass supply chain network (Petridis et al., 2018)
 - Mixed integer weighted goal programming model
- Sustainable forestry management (Belavenutti et al., 2018)
 - Survey include multiple goal programming variants and AHP
- Sustainable remanufacturing processes (Shakourloo, 2017)
 - Stochastic goal programming model


Sustainability criteria

- Technical
 - Is solution able to cope with future demands and conditions (deterministic or stochastic)?
 - Capacity goals, production goals, design goals
- Economic
 - Is solution financially viable on a long-term basis?
 - Cost goals, profit goals, efficiency goals
- Environmental
 - Is solution environmental beneficial and does not cause damage?
 - Emissions goals, ecological goals, pollution goals
- Social
 - Is the solution socially beneficial and equitable
 - Employment goals, equity goals, provision goals, impact goals, access to services goals



Usage in Optimisation

Multiple Criteria in Sustainable Development

Source: United Nations University

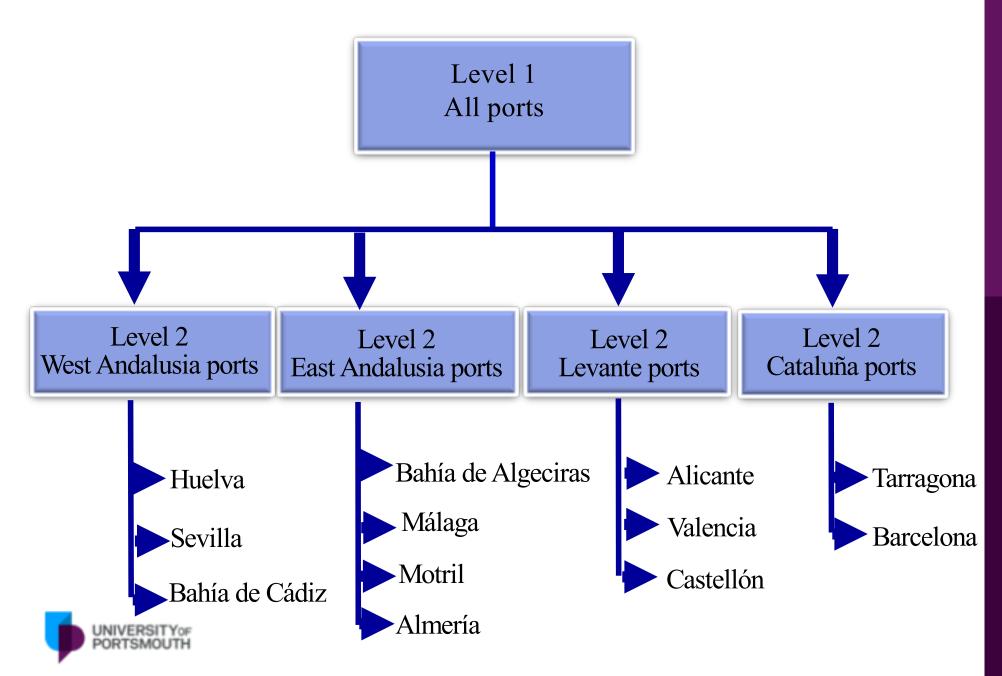
Application: Sustainable Container routing in Spain

- Decision problem: Quantity of container traffic to route through 12 key ports on the Southern-Western Atlantic and Mediterranean Coasts
 - 83% of Spanish container total, approx. 15 million TEUs, 5% future increase

Model Characteristics

- The extended network goal programming variant (Jones *et al.*, 2016) is utilized as the decision involves multiple geographical regions and stakeholders.
- Aim is to try and allocate future container growth in a socially sustainable manner

Different objectives:

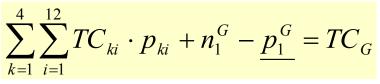

- Economic
- Social
- Environmental
- Technical

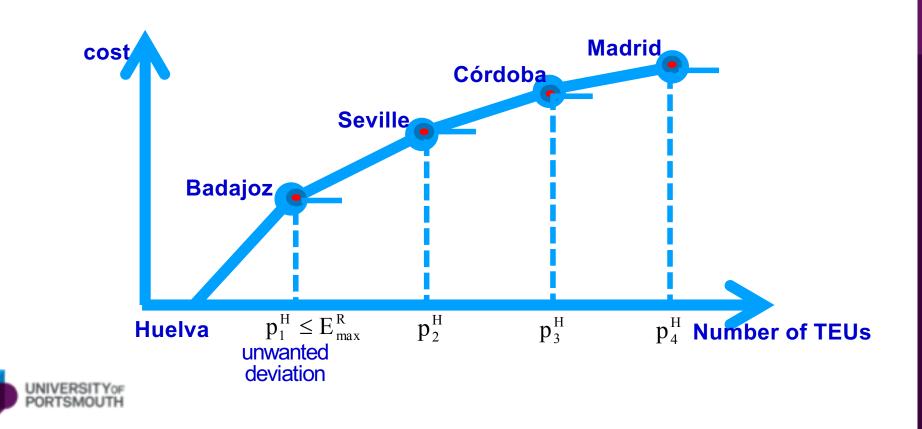
Container transportation costs and port costs Youth unemployment and youth employment rate Carbon dioxide emissions and air quality index (AQI) The allowed vessel size

Stakeholders:

 Spanish Government, regional governments, logistics providers
 UNIVERSITY OF PORTSMOUTH

Network of Ports


Goal programming parameters


Decision	• Amount of TEUs in each port in the future x_i $i = 1,, 12$						
variables	Economic	 Minimise container transportation costs TC Minimise port costs PC 					
Goals	Social	 Minimise the youth unemployment rate YU Maximise the youth employment rate YE 					
	Environmental	 Minimise carbon dioxide emissions CO2 Maximise the air quality index (AQI) of the port AQI 					
	Technical	• Maximise the allowed vessel size VS					
Fixed	 Limits on TEUs required by each city 						
restrictions	 Ensure all future TEUs assigned to a port Minimum and maximum value of the decision variables 						

Transportation cost modelling

Penalty function approach: approximation based on container flows to major cities

Port cost modelling

Port i	Port cost (€) (31/12/15)	TEUs	Port cost (€/TEU)
Huelva	38,341,808.4	47,571.87	805.98
Sevilla	26,639,049.5	229,153.08	116.25
B. Cádiz	21,542,450.2	36,631.07	588.09
B. Algeciras	76,333.6	37,149.18	2.05
Málaga	20,701,539.7	178,910.84	115.71
Motril	8,603,547.9	17,734.65	485.13
Almería	16,031,933.4	59,701.12	268.54
Alicante	13,793,370.3	104,756.02	131.67
Valencia	128,860,408.3	303,483.71	424.60
Castellón	21,219,461.2	70,359.40	301.59
Tarragona	48,216,994.6	63,957.07	753.90
Barcelona	145,351	777,216	0.19

$$\sum_{i=1}^{12} PC_i x_i + n_2^G - \underline{p_2^G} = PC_G$$

0.19 * 2,022,955

total port cost (€)

number TEUs

PC_i =

Source: Profit and loss accounts (BOE, 2015)

Youth unemployment modelling

Port i	Youth unemployed people (Dic 2016)	Youth working-age population (Dic 2016)	Youth unemployment rate %	$\sum_{i=1}^{12} YU_i$	$x_i + n_3^G - \underline{p_3^G} = YU$				
Huelva	5,672	18,300	30.99	<i>l</i> -1					
Sevilla	21,613	62,200	34.75						
B. Cádiz	16,023	33,200	48.26	_					
B. Algeciras	16,023	33,200	48.26		Target value				
Málaga	15,089	45,500	33.16		YUg				
Motril	8,919	28,100	31.74						
Almería	5,477	24,400	22.45	Movir	num VII: v Totol future				
Alicante	10,755	59,900	17.95		Maximum YUi x Total futur TEUs (increase 5%)				
Valencia	13,862	93,000	14.91		EUS (Increase 5%)				
Castellón	3,409	18,100	18.83						
Tarragona	4,166	25,900	16.08						
Barce ¹ na	18,439	194,300	9.9		0.48 * 2,022,955				
	Source: SEPE	Source: INE statisti	cs		0.70 2,022,000				
	statistics SITYOF MOUTH	$\mathbf{YU}_{i} = \frac{\text{number}}{\text{working}}$	of unemployed - age population	15 – 24 ye 15 - 24 ye	$\frac{ar - olds}{ear - olds} \cdot 100$				

Youth employment modelling

Port	Youth employed	Youth	Youth employment	
i	people	population		
	(Dic 2016)	(Dic 2016)	rate %	
Huelva	12,628	54,846	23.02	
Sevilla	40,587	207,743	19.54	
B. Cádiz	17,177	133,123	12.90	
B. Algeciras	17,177	133,123	12.90	
Málaga	30,411	165,827	18.34	
Motril	19,181	100,796	19.03	
Almería	18,923	77,248	24.50	
Alicante	49,145	180,216	27.27	
Valencia	79,138	244,334	32.39	
Castellón	14,691	55,616	26.42	
Tarragona	21,734	77,093	28.19	
Barcelona	175,861	522,673	33.65	

 $\sum YE_i x_i + \underline{n_4^G} - p_4^G = YE_G$

Target value YEG

Minimum YEi x Total future TEUs (increase 5%)

0.129 * 2,022,955

Youth working-age population Source: INE statistics

- youth unemployment

 $\mathbf{YE}_{i} = \frac{\text{number of employed people 15 - 24 years - old}}{\text{total population 15 - 24 years - old}} \cdot 100$

Carbon emissions modelling

Port i	CO2 (tons) verified in 2015	Rank					
Huelva	3,282,033		9				
Sevilla	60,204		4				
B. Cádiz	0		1				
B. Algeciras	3,906,065		10				
Málaga	1,381,532		8				
Motril	173,219		5				
Almería	0		1				
Alicante	1,442		2				
Valencia	12,530		3				
Castellón	1,319,617		7				
Tarragona	4,259,503		11				
Barcelona	1,107,019		6				
Source: Observatorio de la							

Sostenibilidad Report

CO2i

$$\sum_{i=1}^{12} CO2_i x_i + n_5^G - \underline{p_5^G} = CO2_G$$

 Main CO₂ emitting installations
 Installations are located less than 15 km from the port

Minimum rank x Total future TEUs (increase 5%)

Air quality modelling

	 	_			C	C			
Port	AQI value			$\sum AQ$	$I_i x_i + n_6^G - I_6$	$p_6^{\rm G} = AQI$	G		
i	(31/12/16)			<i>i</i> =1					
Huelva	48			Г	Target				
Sevilla	44.8				Target				
B. Cádiz	46								
B. Algeciras	56			Biggest goo	od value in le	vels of heal	th		
Málaga	47.33		Total future TEUs (increase 5%)						
Motril	60								
Almería	52								
Alicante	34	50 * 2,022,955							
Valencia	39.6		AQI colour code guide						
Castellón	30		AQI valu	es Leve	els of Health	Colour			
Tarragona	41.33		0-50		Good	Green			
Barcelona	46.55		51-100) [Moderate	Yellow			
		J	101-150		healthy for sitive group	Orange			
	Source: AQI statistics Spain.		151-200	ວ <u></u> ເ	Jnhealthy	Red			
UNIVERSITYOF	Ecologistas en Acci	ón	201-300	0 Ver	y Unhealthy	Purple			

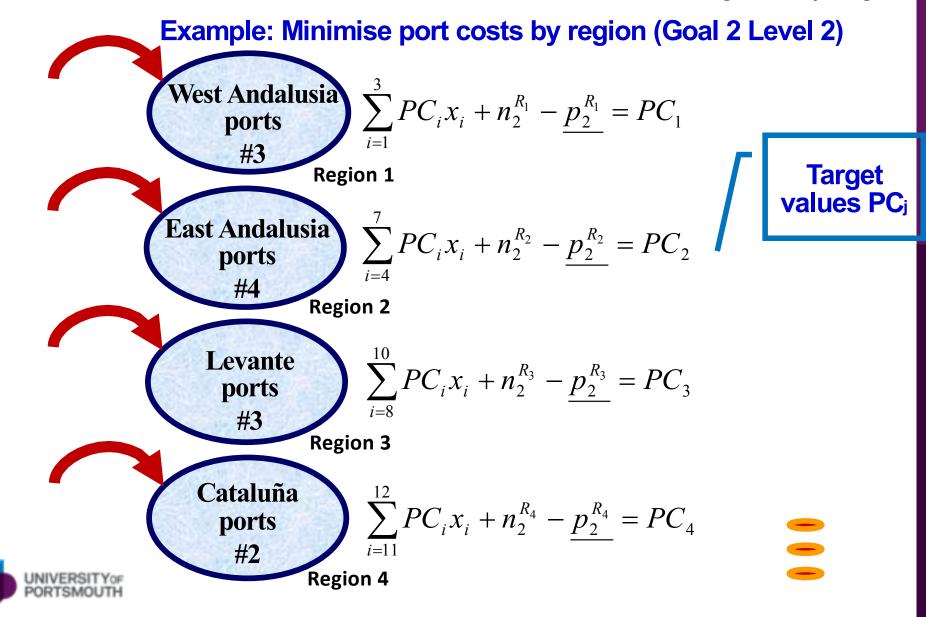
12

Vessel size modelling

Port i	Basin length in commercial docks (m)	Rank					
Huelva	4,298		7				
Sevilla	4,714		6				
B. Cádiz	2,392		11				
B. Algeciras	6,776		4				
Málaga	2,938		10				
Motril	2,369		12				
Almería	3,320.7		8				
Alicante	3,099.07		9				
Valencia	12,462		2				
Castellón	6,388		5				
Tarragona	8,981		3				
Barcelona	15,229.7		1				
Source: Puertos del Estado. Annual reports							

$$\sum_{i=1}^{12} VS_i x_i + \underline{n_7^G} - p_7^G = VS_G$$

Smallest rank x Total future TEUs (increase 5%)

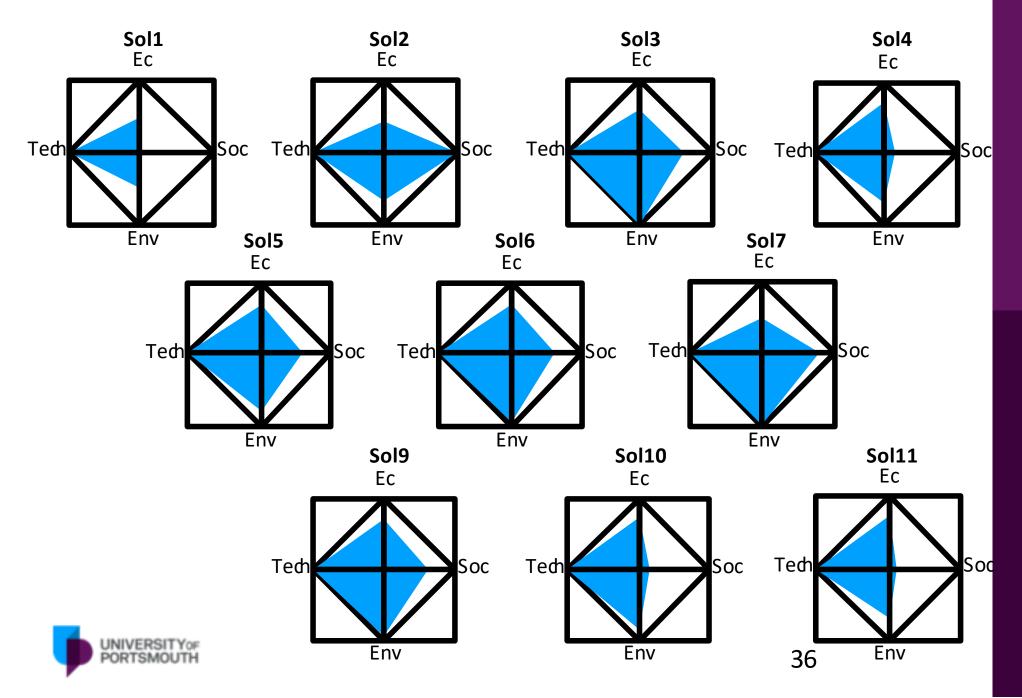


1 * 2,022,955

Second level (regional) modelling

To calculate economic, social, environmental and technical goals by region

Extended network goal programming achievement function


$$Min w \left[\alpha^{G} D^{I} + (1 - \alpha^{G}) \left(\frac{v_{1}^{G} p_{1}^{G}}{TC_{G}} + \frac{v_{2}^{G} p_{2}^{G}}{PC_{G}} + \frac{u_{1}^{G} n_{3}^{G}}{YUR_{G}} + \frac{v_{4}^{G} p_{4}^{G}}{YER_{G}} + \frac{v_{5}^{G} p_{5}^{G}}{CO2_{G}} + \frac{v_{6}^{G} p_{6}^{G}}{AQI_{G}} + \frac{u_{2}^{G} n_{7}^{G}}{LP_{G}} \right) \right] + \\ (1 - w) \left[\beta D^{I} + (1 - \beta) \sum_{j=1}^{4} \left(\alpha^{R_{j}} D^{I_{j}} + (1 - \alpha^{R_{j}}) \left(\frac{v_{1}^{R_{j}} p_{1}^{R_{j}}}{TC_{j}} + \frac{v_{2}^{R_{j}} p_{2}^{R_{j}}}{PC_{j}} + \frac{u_{1}^{R_{j}} n_{3}^{R_{j}}}{YUR_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac{v_{2}^{R_{j}} p_{2}^{R_{j}}}{QC_{j}} + \frac{u_{1}^{R_{j}} n_{3}^{R_{j}}}{YUR_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YUR_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YUR_{j}} + \frac{v_{4}^{R_{j}} p_{4}^{R_{j}}}{YER_{j}} + \frac$$

• Normalization criteria: Dividing each unwanted deviation variable between their target (percentage normalisation).

- •Sensitivity analysis (Jones, 2011) employed to elicit criterion trade-offs
- Models solved by LINGO software

Solutions by sustainability criteria

Sample Solution in Decision Space

Decision variables	Sol 10	
	TEU's	% change
x ₁ : Huelva port	45,952.12	-5%
x ₂ : Sevilla port	222,882.94	-5%
x ₃ : Bay of Cádiz port	35,628.76	-5%
x ₄ : Bay of Algeciras port	5,705.16	25%
x₅: Málaga port	17,4015.44	-5%
x ₆ : Motril port	5,749.8	-5%
x ₇ : Almeria port	58,067.56	-5%
x ₈ : Alicante port	134,065.34	25%
x ₉ : Castellón port	388,394.36	25%
x ₁₀ : Valencia port	68,434.21	-5%
x ₁₁ : Tarragona port	62,207.06	-5%
x ₁₂ : Barcelona port	821,852.25	3%

Marine renewable energy planning: OR for sustainable energy

- 20M Project (2012-2015)
 - 5 partner, €1.8million UK-France
 - Offshore wind farm maintenance and supply chain planning
- Channel MOR Project (2014-2015)
 - 12 partner, €1million UK-France
 - Marine renewable energy mapping
- Leanwind Project (2013-2017)
 - 31 partner, €10million Europe wide
 - Offshore wind efficiency (all aspects)
- Research visits to Brazil (2012-2016)

leanwind

European Regional Development Fund The European Union, investing in your future

FADESD

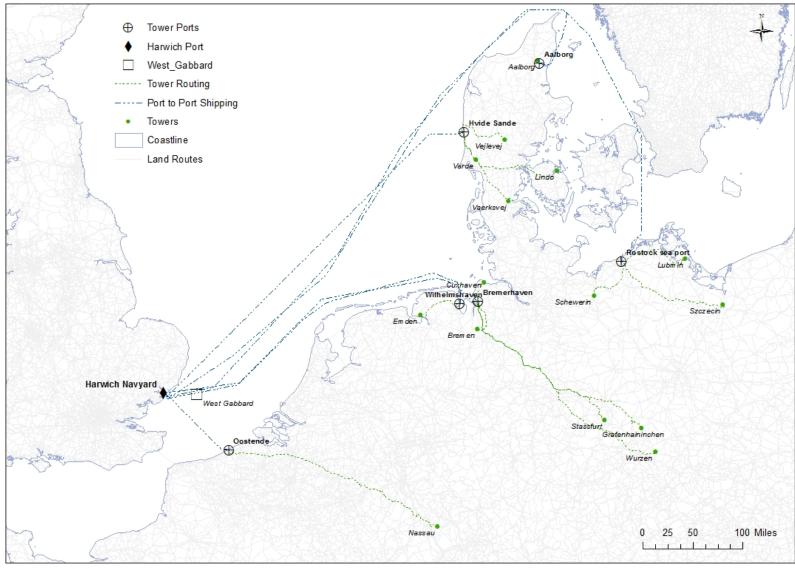
Fonds européen de développement régional L'Union européenne investit dans votre avenin

Offshore wind efficiency?

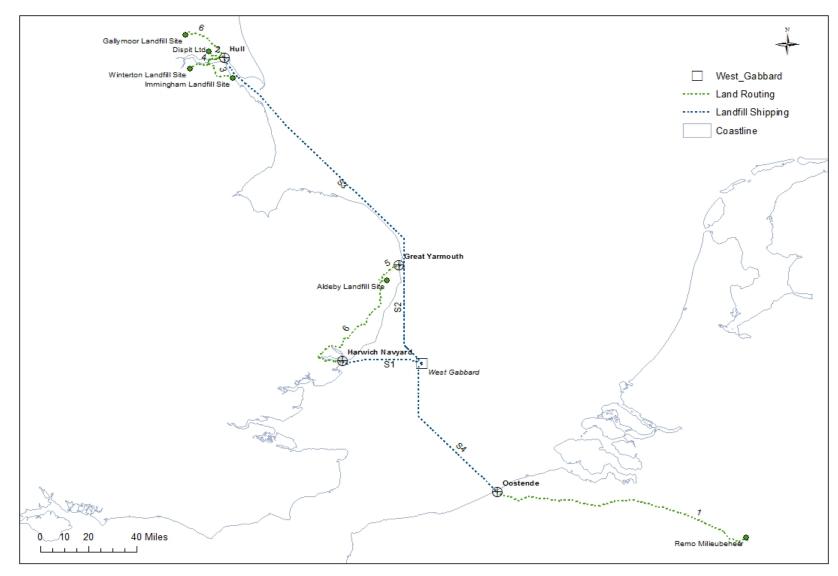
"Offshore wind to power £17.5bn investment boom as costs halve

Only a few years ago sceptics scoffed at claims that offshore wind power could be generated for a third less within a decade; this week the **True** industry **cut its costs by half in less than three years**. This will mean cheaper energy bills for British households. But it could also establish the UK as a world leader in the green technology, as turbines are built along the coast."

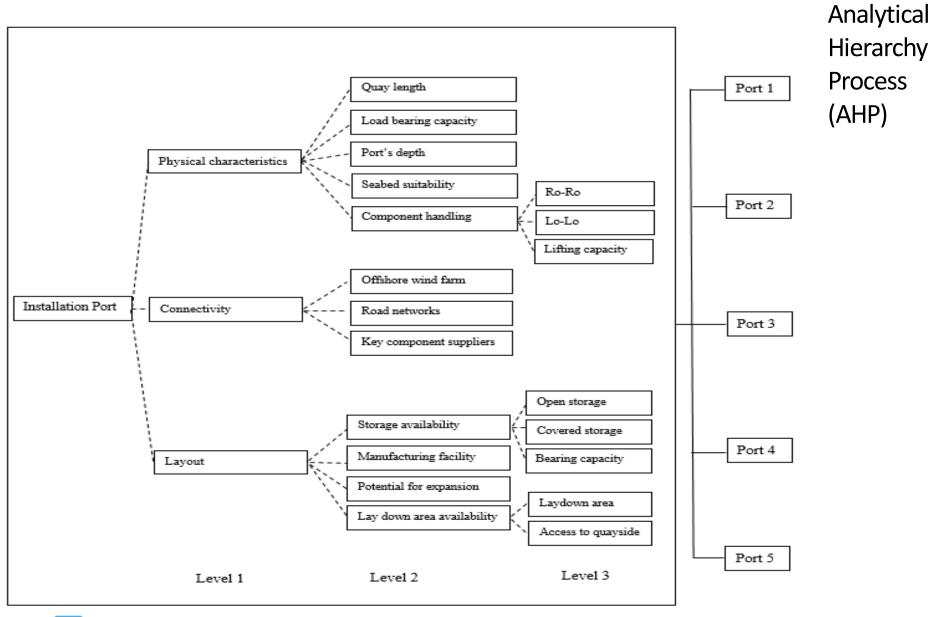
Daily Telegraph, 11th September 2017


"Wind power has failed to deliver what it promised. The wind-power industry is expansive passes costs on to the consumer and does not create many jobs in return"

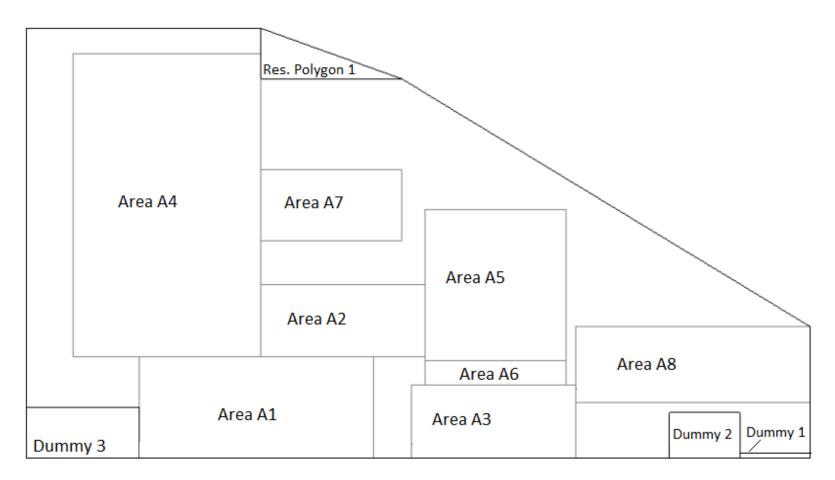
Daily Telegraph View, 15th June 2013



Proposed routing - construction



Proposed routing – Decommissioning


How to choose the ports?

Akbari, Irawan, Jones and Menachof (2017)

How to layout the ports?

Irregular shape packing – Irawan, Song, Jones, Akbari (2017)

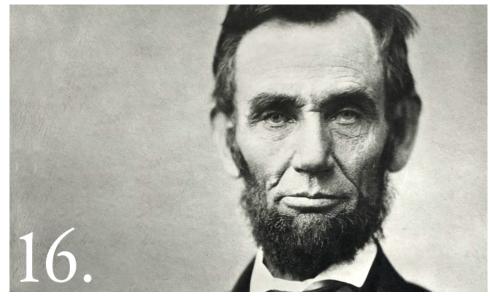
Offshore wind site selection

Offshore UK wind farm zones

Round 3 Sites

Jones and Wall, 2016

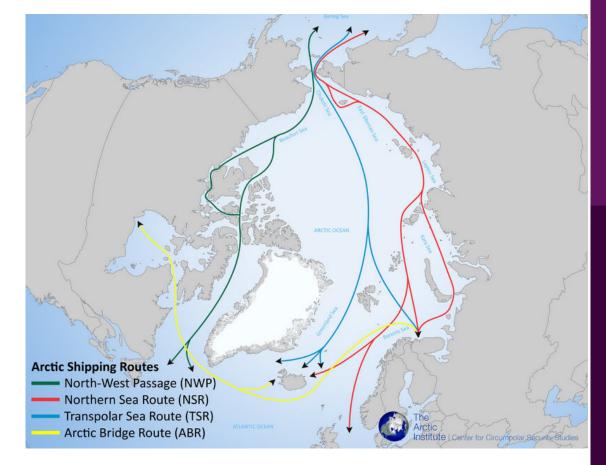
Where to build wind farms?


- Decision Owner: Crown Estate, Operators
 - Where to progress wind farms from a set of possible offshore locations (x_i = 0 if not progressed, x_i = 1 if progressed)
- Stakeholders:
 - Manufacturers
 - Operators
 - Governmental Authorities
 - Ports
 - Logistics Providers
 - Other Maritime Stakeholders: Leisure Community, Local Community, Environmentalists, Fishing Community.

Multi-stakeholder multi-criteria decision problem

"You can please some of the people all of the time, you can please all of the people some of the time, but you can't please all of the people all of the time"

A. Lincoln (apocryphal),J. Lydgate (postulated)



Source: Whitehouse.Gov

Future Applications - Arctic shipping and tourism

- Potential gains in time, cost, distance
- Location and scheduling of search and rescue facilities
- Protection of environment and indigenous communities

Future Application – Smart Lights Concept (SLIC)

- Assessment of smart lighting solutions in France, Belgium and the Netherlands
- Multiple sustainability criteria
 - Environmental pollution
 - Safety
 - Cost of Implementation

Project timescale 2018-2021

2 Seas Mers Zeeën SLIC

European Regional Development Fund

Conclusions

- There is a natural synergy between multiple criteria decision making and sustainability
- Goal programming is an appropriate technique for the investigation of trade-offs between the attainment of conflicting sustainability goals
- The field of multiple criteria sustainability optimisation spans many, diverse current and future fields of application
- There exist challenges in accurate quantitative modelling of social (and sometimes other) sustainability criteria

Thank you for attending

References

- Akbari N, Irawan C, Jones DF & Menachof, D. (2017) A multi-criteria port suitability assessment for developments in the offshore wind industry, *Renewable Energy*, 102, 118-133.
- Irawan C, Song X, Jones DF & Akbari N (2017) Layout optimisation for an installation port of an offshore wind farm, *European Journal of Operational Research*, 259, 67-83.
- Irawan C, Jones DF & Ouelhadj D (2017) Bi-objective optimisation model for installation scheduling in offshore wind farms, *Computers & Operations Research*, **78**, 393-407.
- Jones DF and Tamiz M (2010) *Practical Goal Programming,* Springer, New York, ISBN: 978-1-4419-5770-2
- Jones DF and Wall G (2016) An extended goal programming model for site selection in the offshore wind farm sector, *Annals of Operations Research*, 245, 121-135.
- Jones DF (2011) A practical weight sensitivity algorithm for goal and multiple objective programming, *European Journal of Operational Research*, 213, 1, p. 238-245
- Jones DF, de Oliveira Florentino, H, Cantane, D & Oliveira, R (2016) An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders, *European Journal of Operational Research*, 255, 845-855.

